Topological rigidity for FJ by the infinite cyclic group

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological rigidity for non-aspherical manifolds by

The Borel Conjecture predicts that closed aspherical manifolds are topological rigid. We want to investigate when a non-aspherical oriented connected closed manifold M is topological rigid in the following sense. If f : N → M is an orientation preserving homotopy equivalence with a closed oriented manifold as target, then there is an orientation preserving homeomorphism h : N → M such that h an...

متن کامل

Topological Rigidity for Hyperbolic Manifolds

Let M be a complete Riemannian manifold having constant sectional curvature —1 and finite volume. Let M denote its Gromov-Margulis manifold compactification and assume that the dimension of M is greater than 5. (If M is compact, then M = M and dM is empty.) We announce (among other results) that any homotopy equivalence h: (N,dN) —• (M,dM), where N is a compact manifold, is homotopic to a homeo...

متن کامل

Addendum to: "Infinite-dimensional versions of the primary, cyclic and Jordan decompositions", by M. Radjabalipour

In his paper mentioned in the title, which appears in the same issue of this journal, Mehdi Radjabalipour derives the cyclic decomposition of an algebraic linear transformation. A more general structure theory for linear transformations appears in Irving Kaplansky's lovely 1954 book on infinite abelian groups. We present a translation of Kaplansky's results for abelian groups into the terminolo...

متن کامل

Infinite-dimensional versions of the primary, cyclic and Jordan decompositions

The famous primary and cyclic decomposition theorems along with the tightly related rational and Jordan canonical forms are extended to linear spaces of infinite dimensions with counterexamples showing the scope of extensions.

متن کامل

Cracks in topological rigidity

Topological rigidity is an analogue of the Baum-Connes conjecture, and is motivated by Mostow rigidity and Margulis superrigidity. I will discuss some of the places where this heuristic reasoning fails, and the rigidity shows some cracks – that are rather different than the places where strong forms of the Baum-Connes conjecture fails.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Topology and Analysis

سال: 2018

ISSN: 1793-5253,1793-7167

DOI: 10.1142/s1793525318500139